ORIGINAL PAPER

Liping Cheng · Qianshu Li · Wenguo Xu · Shaowen Zhang

A computer-aided quantum chemical study of the N_{15}^{-} cluster

Received: 2 October 2002 / Accepted: 13 January 2003 / Published online: 12 March 2003 © Springer-Verlag 2003

Abstract Ab initio (RHF, MP2) and Density Functional Theory (DFT) methods have been used to examine six isomers of the N_{15}^- cluster with the 6-31+G* basis set. Different from the known odd-numbered anionic N_7^- , N_9^- , and N_{11}^- clusters, in which the open-chain structures are the most stable species, the most stable N_{15}^{-} isomer is structure 1 (C_1), which may be considered as a complex between the fragments cyclic N_5^- (D_{5h}) and staggered N_{10} (D_{2d}) . The decomposition pathways of structure 2 (C_S), containing two aromatic N₅ rings connected by a N₅ chain, and the open-chain structure $3(C_{2v})$ were studied at the B3LYP/6-31+G* level of theory. Relative energies were refined at the level of B3LYP/6-311+G(3df,2p)// B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*). The barriers for N_2 and N_5^- (D_{5h}) fission reactions for structure 2 are predicted to be 18.2 and 14.2 kcal mol⁻¹, respectively. The corresponding $N_2+N_3^-$ fission barrier for structure 3 is predicted to be 11.2 kcal mol⁻¹. Supplementary material is available for this article if you access the article at http:// dx.doi.org/10.1007/s00894-003-0118-0. A link in the frame on the left on that page takes you directly to the supplementary material.

Electronic Supplementary Material Supplementary material is available for this article if you access the article at http://dx.doi.org/10.1007/s00894-003-0118-0. A link in the frame on the left on that page takes you directly to the supplementary material.

Keywords Nitrogen cluster \cdot Ab initio \cdot High-enery-density materials (HEDM) \cdot N₁₅⁻

L. Cheng · Q. Li () · W. Xu · S. Zhang School of Chemical Engineering and Materials Science, Beijing Institute of Technology, 100081 Beijing, P.R. China e-mail: QSLi@bit.edu.cn Tel.: +86-10-68912665 Fax: +86-10-68912665

Introduction

Three pure nitrogen chemical species in bulk compounds are experimentally known, i.e., N_2 , N_3^- [1] and N_5^+ . [2] The last was synthesized in 1999. Furthermore, there is the new evidence for the existence of the tetranitrogen molecule, N₄, as a metastable species whose lifetime exceeds 1 µs at 298 K. [3] Could other "polynitrogen molecules" exist? In recent years, the hypothetical existence of polynitrogen clusters has been the focus of many theoretical studies. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] Besides their theoretical interest, these intriguing structures have received attention because of their possible use as high-energy-density materials (HEDM).

Although most theoretical studies treated even-numbered nitrogen clusters, [3, 4, 5, 6, 7, 8, 9, 10, 11] it is surprising that, besides the particularly stable nitrogen molecule, N₂, the synthesized nitrogen clusters $[N_n (n>2)]$ are not even-numbered nitrogen clusters but two ionic odd-numbered clusters N₃⁻ and N₅⁺. Therefore, more and more attention was paid to odd-numbered nitrogen clusters, such as N₃⁻, [1] N₃, [12] N₃⁺, [13] N₅, N₅⁻, N₅⁺, [14, 15, 16, 17] N₇, [18, 19] N₇⁻, N₇⁺, [20, 21, 22] N₉, N₉⁻, N₉⁺, [23, 24] N₁₁, N₁₁⁺, N₁₁⁻, [25, 26] and N(N₃)₄⁺ [21] etc.

It is well known that the pentazole anion N_5^- (D_{5h}) can be expected to be particularly stable due to the aromatic character of the π -electron system. [7] For N_7^- , Michels et al. [20] demonstrated that the open chain, diazidamide structure, (N_3 –N– N_3)⁻, is a local minimum at the RHF/6-31+G^{*} and MP2/6-31+G^{*} levels of theory. Our recent calculation [21] for N_7^- also confirmed that the energetically low-lying isomer is the open-chain structure with C_{2v} or C_2 symmetry. In addition, we have also investigated the N_9^- cluster. [23] Computational results showed that the most stable anion N_9^- is an open-chain structure but with C_8 symmetry. For the larger odd-numbered anionic cluster, N_{11}^- , we [26] recently found that, similar to the N_7^- and N_9^- clusters, the open chain structure with C_{2v} symmetry is the global minimum. Based on the previous investigations on the oddnumbered anionic clusters, it seems that generally the most stable known odd-numbered anionic isomers are the open-chain structures. Is this conclusion applicable to the N_{15}^{-} cluster? To answer this question, we now report a theoretical study on the N_{15}^{-} cluster.

Nitrogen clusters are of significant interest as HEDM for propulsion and explosive applications. The critical properties for effective HEDM molecules are high dissociation barrier and facile syntheses. Therefore, it is very valuable to search all possible synthesis and dissociation routes for any new fuel candidates. Although a large body of theoretical studies has already been devoted to the polynitrogen clusters, [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] they were mainly focused on the structures and energies of various polynitrogen isomers and only a few studies [15, 17, 22, 27, 29] on their synthesis and decomposition mechanism were reported. For instance, Wang et al. [27] predicted the synthesis reaction pathway of N₆ (C_{2h}) from HN₃ and N₃F. Gagliardi et al. [15] reported a theoretical study on the formation of the nitrogen cluster N_{10} from the ionic species N_5^+ and N_5^- . Nguyen et al. [17] have discussed the decomposition of the pentazole N_5^- (D_{5h}) into $N_3^-+N_2$ and reinforced the view that the pentazole anion is a relatively stable cyclic species with a moderately high energy barrier (110-114 kJ mol⁻¹). Our recent study [22] showed that the gauche C₂ form N₇⁻ can very easily dissociate into $N_3^++N_2^++N_2$ with only 5.0 kcal mol⁻¹ and 1.2 kcal mol⁻¹ energy barriers at the B3LYP/6-311+G(3df,2p)//B3LYP/ 6-31+G(d) and G2(MP2)//MP2/6-31+G(d) levels of theory, respectively.

In the present study, besides geometric optimization and vibrational frequency analysis, we have also performed calculations on the decomposition pathways of some low-lying energetic N_{15}^{-} species in an attempt to provide a theoretical foundation for synthesizing HEDM.

Computational method

Geometries were fully optimized with restricted Hartree-Fock (RHF), density functional theory (DFT), and second-order perturbation theory (MP2). [30] The DFT method used in the present work comprises the combinations of Becke's three-parameter nonlocal functionals [31] with the nonlocal correlation of Lee, Yang, and Parr [32] or with the Perdew-Wang 1991 correlation functionals, [33] herein denoted as B3LYP and B3PW91, respectively. The MP2 method employed is one using the frozen core approximation. The basis set we used is the 6-31+G*, which is a split-valence double-zeta polarization basis set augmented with the diffuse functions. [34] To characterize the nature of the stationary points and to determine the zero-point energy (ZPE) corrections, harmonic vibrational frequencies were also calculated at the RHF/6-31+G*, B3LYP/6-31+G*, and B3PW91/6-31+G* levels of theory. For transition states, the minimum energy pathways connecting the reactants and products were confirmed using the intrinsic reaction coordinate (IRC) method with the Gonzalez-Schlegel secondorder algorithm. [35, 36] Final energies were refined at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*) level of theory. In addition to the structural and energetic investigations, the natural population and Wiberg bond indices (WBI) analyses were also presented using the natural bond orbital procedure (NBO). [37, 38, 39, 40] All computations were carried out with the Gaussian 98 program package. [41]

Throughout this paper, bond lengths are given in angströms, bond angles in degrees, total energies in hartrees, and relative and zero-point vibrational energies in kcal mol⁻¹.

Results and discussion

The optimized structures for six N_{15}^{-1} isomers are shown in Figs. 1 and 2. The total energies, zero-point energies (ZPE), and the relative energies corrected by ZPE of the N_{15}^{-1} isomers are summarized in Tables 1 and 2. The six isomers are all local minima on their potential energy surfaces (PES) at the above levels of the theory.

Minimum energy N_{15}^{-} isomers

It can be seen in Table 2 that the energetic stability ordering of the six N_{15}^- isomers is 1>2>3>4>5>6 at all levels of the theory. Energetically speaking, 1 (C₁), as shown in Fig. 1a, is the most stable species among these six isomers. Examining the structure of 1, as well as its NBO results, this anion may be considered as a complex between the fragments cyclic N_5^- (D_{5h}) and staggered N₁₀ (D_{2d}). At the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G*

Table 1 Total energies [E (Hartrees)] and the zero-point energies [(ZPE) (kcal mol⁻¹)] for six N₁₅⁻ isomers

Isomers N ₁₅	RHF/6-31+G*		B3LYP/6-31+G*		B3PW91/6-31+G*		MP2/6-31+G*
	E	ZPE	E	ZPE	E	ZPE	E
$ \frac{1 (C_1)}{2 ({}^{1}A', C_S)} \\ 3 ({}^{1}A_1, C_{2v}) \\ 4 (C_1) \\ 5 (C_1) \\ 6 ({}^{1}A', C_S) $	-816.44156 -816.42183 -816.32341 -816.30758 -816.28025 -816.22811	51.3 51.0 45.6 45.6 47.4 48.6	-821.06478 -821.05711 -820.97922 -820.96725 -820.94664 -820.91163	44.2 44.1 40.2 40.2 41.2 41.8	-820.75017 -820.74104 -820.64987 -820.63835 -820.62272 -820.59310	45.1 45.0 41.0 41.0 42.0 42.8	-818.97315 -818.93051 -818.82897

Fig. 1 Structures (a) 1, (b) 2, and (c) 3 of the N_{15}^{-} cluster, showing bond distances in Å and bond angles in degrees

∠2-1-3	∠1-2-4	∠1-3-5	∠1-3-6	∠1-3-7	∠2-4-5	∠3-5-4	∠3-6-8	∠8-6-14	∠3-7-9	∠9-7-15	∠7-9-11	∠9-11-13
104.5	109.2	112.3	95.7	123.3	109.3	104.6	89.8	108.1	122.6	112.2	104.7	109.2
103.8	109.5	113.3	105.0	122.7	109.7	103.7	87.7	108.1	122.7	113.3	103.8	109.5
103.7	109.5	113.6	104.2	122.6	109.7	103.6	87.7	108.1	122.5	113.6	103.7	109.5
102.7	109.6	115.2	99.1	121.9	110.0	102.5	86.7	108.0	121.9	115.2	102.7	109.6
			1	0-12-14	T 5-3-7-9	7 1-3-	7-9 + 6.	3-5-4 11	5-3-7-9			

2 10-12-14			10-3-3-4	
108.2	65.4	-110.1	91.5	147.8
108.2	46.1	-132.6	102.1	121.5
108.2	44.2	-134.5	101.6	120.7
108.3	36.6	-144.0	97.6	117.5

 $1(C_1)$

a

с

3 (C_{2v})

4 (C₁)

Fig. 2 Structures (a) 4, (b) 5 and (c) 6 of N_{15}^- cluster, showing bond distances in Å and bond angles in degrees

102

Table 2 Relative energies (kcal mol⁻¹) with zero-point energy corrections for six N_{15} -isomers

Isomers	RHF/6-31+G	* B3LY	(P/6-31+G*	B3PW91/6	5-31+G*	MP2/6-31+G*
$1(C_1)$	0.0	0.0	0.0		0.0	
$2(^{1}A', C_{S})$	12.1	4.7		5.6		26.8
$3(^{1}A_{1},C_{2v})$	68.4	49.7		58.8		90.5
$4(C_1)$	78.4	57.2		66.1		
$5(C_1)$	97.3	71.1		76.9		
$\frac{6 (^{1}A', C_{S})}{$	131.2	93.7		96.3		
N ₁₅ -isomer	1 (C ₁)	2 (C _S)	3(C _{2v})	4(C ₁)	5(C ₁)	6(C _S)
B3LYP	263.4	267.0	306.5	314.3	330.4	355.3
MP2	264.9	291.7	355.4			

Table 3 Dissociation energies (kcal mol⁻¹) to $6 N_2+N_3^-$ at the B3LYP/6-311+G(3df,2p)// B3LYP/6-31+G* and MP2/6-31+G* levels of theory

level, the binding energy for 1 is calculated to be 9.7 kcal mol⁻¹. Natural population analysis confirms that this complex consists of two moieties, N_5^- and N_{10} . The sum of the charges on the N6 (-0.230), N8 (-0.230), N10 (-0.174), N12 (-0.182), and N14 (-0.174) atoms is about -1.0, corresponding to that of the N_5^- moiety, and that on the other nitrogen atoms is about 0.0, corresponding to that of a neutral N_{10} moiety. As the distance (2.743–2.985 Å) between the N3 and N6 atoms is so long, we predict the interaction between the atoms of the above N_5 ring and the atoms of the other two N_5 rings appears to be a long-range Coulomb induced force.

As shown in Fig. 1b, structure 2 (C_S) contains two five-membered rings connected by an N₅ chain. It is the second most stable isomer and energetically less stable than 1 by 12.1, 4.7, 5.6, and 26.8 kcal mol⁻¹ at the RHF/6-31+G*, B3LYP/6-31+G*, B3PW91/6-31+G*, and MP2/ 6-31+G* levels of theory, respectively. Different from the structure of the corresponding neutral molecule, [28] structure 2 is not a planar molecule; there is a dihedral angle (about 150°) between the two five-membered rings and the center N₅ chain. As shown in Fig. 1, most of its bond lengths in the two terminal N₅ rings are close to the aromatic N–N bond length (1.350 Å). [7] In the center N_5 chain, the bond lengths of N1-N2 (or N1-N3) and N2-N4 (or N3-N5) are also close to the aromatic N-N bond length (1.350 Å). However, the bond lengths of the two bridge bonds N4-N6 and N5-N7 are closer to the singlebond length of H_2N-NH_2 (1.449 Å). All the WBI of bonds in the two terminal N_5 rings of 2 are more than 1.2, the corresponding values in the center chain are more than 1.3, but the WBI of the two bridge bonds N4-N6 and N5-N7 are about 1.0. Therefore, the two terminal N_5 rings and the center N_5 chain may form three small isolated conjugation systems. Natural population analysis indicates that the net negative charges of this isomer mainly lie on the atoms N1, N4 (N5), N10 (N11) and N12 (N13), which are -0.208, -0.116, -0.120, and -0.115, respectively.

Structure **3** is an open-chain structure with C_{2v} symmetry, different from the anions of N_7^- (C_{2v} or C_2), [21] N_9^- (C_5) [23] and N_{11}^- (C_{2v}); [26] this isomer is not the most stable species in the N_{15}^- system. As listed in Table 2, it is energetically higher than **1** by 68.4, 49.7,

Table 4 Electron affinities (eV) of N_{15}^{-} isomers corresponding to neutral molecules

Isomer	Electron affinity						
	B3LYP/6-31+G*	MP2/6-31+G*					
$1(C_1)$	6.47	7.96					
$2({}^{1}A',C_{S})$	5.93	8.07					
$3(^{1}A_{1},C_{2v})$	5.31	8.87					
$4(C_1)$	5.05						
$5(C_1)$	5.14						
$6({}^{1}A',C_{S})$	5.21						

58.8, and 90.5 kcal mol⁻¹ at the RHF/6-31+G*, B3LYP/6-31+G*, B3PW91/6-31+G*, and MP2/6-31+G* levels of theory, respectively. Natural population analysis gives the result that the net negative charges of this isomer lie mainly on the atoms N1, N4 (N5), N8 (N9) and N10 (N11), which are -0.176, -0.163, -0.105, and -0.190, respectively.

As shown in Fig. 2a–c, the remaining three structures 4-6 are all local minima on their PES at the above levels of the theory, but they are all high-lying energetic species, about 57–132 kcal mol⁻¹ less stable than 1. In view of their instability, they will be no further discussion for these isomers.

The energy differences relative to $6N_2+N_3^-$ molecules are listed in Table 3 and it appears that these six $N_{15}^$ isomers would be very energetic materials. Based on our investigations on the neutral N_{15}^- molecules, [28] the electron affinities (EAs) of all N_{15}^- isomers can then be easily calculated and they are tabulated in Table 4.

Transition structures and reaction barriers for decomposition reactions

Since the low-energy species always receive attention, we shall, in the present study, examine their possible decomposition pathways with B3LYP. However, isomer 1 is a weak ion-molecule complex. Since the decomposition of a weak complex is generally a simple and easy bond cleavage and barrier-free process, we need not further explore its decomposition mechanism. Therefore,

Fig. 3 Structures of dissociation products N_{10} (C_S), N_5^- (D_{5h}), N_{13}^- (C₁), N_{10} (C_{2h}), N_3^- , and N_2 , showing bond distances in Å and bond angles in degrees

Table 5 Total energies [E (Hartrees)] and the zero-point energies [(ZPE) (kcal mol⁻¹)] for the reactants, complex, transition states, and products

Species	B3LYP/6-31+G*		B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G*+ZPE		
	E	ZPE	$E = \frac{(BSL1F/0-51+G^2)}{E}$		
$\frac{1}{2 N_{15} (C_S)}$	-821.05711	44.1	-821.29874		
$N_{13}^{-}(C_1)$	-711.56546	36.6	-711.77905		
$N_2 (D_{\infty h})$	-109.52978	3.5	-109.56684		
$TS1 C_1$	-821.02253	41.5	-821.26558		
$N_{5}^{-}(D_{5h})$	-273.76309	13.5	-273.84178		
N_{10} (C _S)	-547.26741	28.3	-547.43516		
Complex (C_1)	-821.05087	42.6	-821.29622		
TS2 (C_1)	-821.03011	42.2	-821.27311		
$3 N_{15}^{-} (C_{2y})$	-820.97922	40.2	-821.22952		
$N_{10}(C_{2h})$	-547.24212	26.8	-547.41372		
N_3^- ($D_{\infty h}$)	-164.24473	6.7	-164.29706		
$TS3(C_S)$	-820.95537	37.8	-821.20782		

we only predict the possible decomposition mechanisms for isomers 2 and 3.

The geometric structures and the optimized geometric parameters for the reactants, products, transition states, and complex are shown in Figs. 1, 2, 3, and 4. The total energies, zero-point energies (ZPE), and the relative energies corrected by ZPE of the reactants, products, transition states, and complex are tabulated in Tables 5 and 6. Figure 5 plots an energy diagram that presents the relative energies including ZPE corrections of stationary points on the PES of isomers 2 and 3. In the following discussions, we will mainly use the B3LYP/6-311+ $G(3df,2p)//B3LYP/6-31+G^*+ZPE$ (B3LYP/6-31+G*) results unless otherwise indicated.

104

Fig. 4 Structures of TS1-3 and Complex, showing bond distances in Å and bond angles in degrees

-34.4

11.2

1.176

Table 6 Relative energies
(kcal mol ⁻¹ , corrected by ZPE)
of species on the N_{15}^{-} PES

Decomposition process	of 2	, N ₁₅ -	$(C_S) \rightarrow TS1$
$(C_1) \rightarrow N_{13} (C_1) + N_2$			

The ring breaking reaction of 2 (C_S) into N_{13}^{-} (C₁) and N_2 was studied at the B3LYP/6-31+G* level of theory. The search for a transition state leads to a structure with C₁

 $N_{10} (C_{2h}) + N_3 + N_2$

TS3 (C_S)

-26.7

12.6

symmetry. The calculation of the harmonic vibrational frequencies confirmed that the structure is a transition state, with one imaginary frequency equal to $531i \text{ cm}^{-1}$. As shown in Fig. 4, we can note that, compared with structure 2, the two bond lengths of N10–N12 and N6–N14 in **TS1** are stretched whereas that of N12–N14 is

105

343

1.308

Fig. 5 Potential energy surfaces of 2, N_{15}^- (C₅) and 3, N_{15}^- (C_{2v}) at the B3LYP/6-311+G(3df, 2p)//B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*) level of theory

actually compressed and almost becomes a triple $N\equiv N$ bond. A barrier for dissociation of 19.1 kcal mol⁻¹ was obtained at the B3LYP/6-31+G* level of theory. Single point calculation at the B3LYP/6-311+G(3df,2p)// B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*) level decreases this value to 18.2 kcal mol⁻¹. Since the dissociation barrier is close to 20 kcal mol⁻¹ [29], it seems reasonable to consider **2** as a candidate for HEDM along this dissociation path.

Decomposition process of 2, N_{15}^- (C_S) \rightarrow TS2 (C₁) \rightarrow Complex \rightarrow N₅⁻ (D_{5h})+N₁₀ (C_S)

With the distance between N4 and N6 atoms lengthening, the structure transfers into an intermediate (Complex) through TS2 (C_1). The Complex is a local minimum on the PES, as shown by its all real harmonic frequencies at the B3LYP/6-31+G* level of theory. Natural population analysis confirms that the complex consists of two moieties, N_5^- and N_{10} . The sum of the charges on N6, N8, N10, N12, and N14 atoms is -1.0, corresponding to that of N_5^- moiety, and that on the other nitrogen atoms is about 0.0, corresponding to that of neutral N_{10} moiety. As shown in Fig. 4, in the structure of the Complex, the N6 atom of N_5 (D_{5h}) connects the N4 atom of N_{10} (C_S) through long-range Coulomb induced force. The long distance (3.126 Å) between N4 and N6 atoms in the Complex suggests that the charge attraction force between N4 and N6 is greatly weakened. Thus, the bond of N4-N6 would break and N_{15} (C_S), 2 would be decomposed into N_{10} (C_S) and N_5^- (D_{5h}). To verify that the transition state really connects the Complex and structure 2, an IRC calculation was also performed beginning with the transition state TS2 at B3LYP/6-31+G*. The geometries of the two species obtained from IRC calculation are very close to those from the geometry optimization calculations.

The dissociation barrier at the B3LYP/6-311+ G(3df,2p)//B3LYP/6-31+G* +ZPE (B3LYP/6-31+G*) level is 14.2 kcal mol⁻¹. It is not high enough to regard 2 as a suitable candidate for preparation and handling in bulk quantities.

Decomposition process of 3, $N_{15}^{-}(C_{2\nu}) \rightarrow TS3 (C_S) \rightarrow N_{10} (C_{2h})+N_3^{-}(D_{\infty h})+N_2$

The dissociation of **3** (C_{2v}) was investigated at the B3LYP/6-31+G* level of theory. A transition state **TS3** (C_S) with one imaginary frequency 333i cm⁻¹ was found lying about 11.2 kcal mol⁻¹ above **3** at the B3LYP/6-31+G(3df,2p)/B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*) level of theory. The typical bond distances and angles of **TS3** are shown in Fig. 4. **TS3** leads to the formation of the neutral N₁₀ (C_{2h}) species and N₂, N₃⁻⁷ fragments. This is rather obvious by looking at the structure of the TS and the vibrational mode of the imaginary frequency that corresponds to the breaking of the N4–N6 and N8–N10 bonds. Natural population analysis confirms the presence of the N₃⁻⁷ part. The negative charges reside mainly on the atoms N10 and N14 of the N₃⁻⁷, which are -0.299 and -0.183, respectively.

Summary

Six minimum energy isomers of N_{15}^{-1} cluster are reported in this paper. Different from the known odd-numbered anionic N_7^{-1} , N_9^{-1} , and N_{11}^{-1} clusters, in which the openchain structures are most stable, the most stable N_{15}^{-1} isomer is structure 1 (C₁), which may be considered as a complex between the fragments cyclic N_5^{-1} (D_{5h}) and staggered N_{10} (D_{2d}). We have examined the decomposition mechanisms of isomers 2 and 3. For isomer 2, the N_2 eliminating barrier, close to 20 kcal mol⁻¹, suggests that it

106

seems reasonable to consider it as a candidate for HEDM along this dissociation path, but the corresponding value for the N_5^- (D_{5h}) fission reaction is only 14.2 kcal mol⁻¹. Since a reaction generally proceeds through the pathway that has the lowest barrier, it does not seem reasonable to regard 2 as a new fuel. With respect to isomer 3, the small dissociation barrier for the N₂+N₃⁻ fission reaction of only 11.2 kcal mol⁻¹ indicates that this isomer of N_{15}^{-} is not stable kinetically.

References

- 1. Curtius Th (1890) Chem Ber 23:3023-3033
- 2. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) Angew Chem Int Ed Engl 38:2004-2009
- 3. Cacace F, Petris G, Troiani A (2002) Science 295:480-481
- 4. Korkin AA, Balkova A, Bartlett RJ, Boyd RJ, Schleyer PvR (1996) J Phys Chem 100:5702-5714
- 5. Maana MR (2000) Chem Phys Lett 331:262-268
- 6. Bittererova M, Brinck T (2000) J Phys Chem A 104:11999-12005
- 7. Glukhovtsev MN, Jiao H, Schleyer PvR (1996) Inorg Chem 35:7124-7133
- 8. Gagliardi L, Evangelisti S, Barone V, Roos BO (2000) Chem Phys Lett 320:518-522
- 9. Leininger ML, Sherrill CD, Schaefer HF (1995) J Phys Chem 99:2324-2328
- 10. Chen C, Sun K-C, Shyu S-F (1999) J Mol Struct (THEO-CHEM) 459:113-122
- 11. Klapötke TM, Harcourt RD (2001) J Mol Struct (THEOCHEM) 541:237-242
- 12. Wasilewski J (1996) J Chem Phys 105:10969-10982
- 13. Bartlett RJ, Structure and stability of polynitrogen molecules and their spectroscopic characteristics (to be published); http:// www.qtp.ufl.edu/~bartlett/
- 14. Wang X, Hu H-R, Tian A, Wong NB, Chien S-H, Li W-K (2000) Chem Phys Lett 329:483-489
- 15. Gagliardi L, Orlandi G (2001) J Chem Phys 114:10733-10737
- 16. Nguyen MT, Ha T-K (2000) Chem Phys Lett 317:135-141
- 17. Nguyen MT, Ha T-K (2001) Chem Phys Lett 335:311-320
- 18. Li QS, Hu XG, Xu WG (1998) Chem Phys Lett 287:94-99

- 19. Wang X, Ren Y, Shuai MB, Wong NB, Li WK, Tian A (2001) J Mol Struct (THEOCHEM) 538:145-156
- 20. Michels HH, Montgomery JA, Christe KO, Dixon DA (1995) J Phys Chem 99:187-194
- 21. Liu YD, Zhao JF, Li QS (2002) Theor Chem Acc 107:140-146
- 22. Li QS, Zhao JF (2002) J Phys Chem A 106:5928-5931
- 23. Li QS, Wang LJ, Xu WG (2000) Theor Chem Acc 104:67-77
- 24. Li QS, Wang LJ (2001) J Phys Chem A 105:1203-1207
- 25. Li QS, Liu YD (2002) Chem Phys Lett 353:204-212
- 26. Liu YD, Yin PG, Guan J, Li QS (2002) J Mol Struct THEOCHEM) 588:37-43
- 27. Wang LJ, Warburton P, Mezey PG (2002) J Phys Chem A 106:2748-2752
- 28. Cheng LP, Li QS (2003) Int J Quantum Chem (submitted)
- 29. Chung G, Schmidt MW, Gordon MS (2000) J Phys Chem A 104:5647-5650
- 30. Møller C, Plesset MS (1934) Phys Rev 46:618-622
- 31. Becke AD (1993) J Chem Phys 98:1372-1377
- 32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785-789
- 33. Perdew JP, Wang Y (1992) Phys Rev B 45:13244-13249
- 34. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York
- 35. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154-2161 36. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523-5527
- 37. Carpenter JE, Weinhold F (1988) J Mol Struct (THEOCHEM) 169:41-62
- 38. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211-7218
- 39. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899-926
- 40. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735-746
- 41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh, Pa.